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LETTER TO THE EDITOR 

Quantum surface-of-section method: demonstration of 
semiclassical Berry-Robnik energy level-spacing 
distribution in a generic two-dimensional Hamiltonian 
system 
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Center for Applied'Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 
SLO-62000 Maribor, Slovenia 

Received 17 February 1995. in final form 19 April 1995 

Abstract. The recently developed quantum surfnce-@-section method is applied to a search 
for extremely high-lying energy levels in a simple but generic Hamiltanian system between 
integrability and chaos. namely the semiseparabk wo-dmmioml oscillator. Using the stretch 
of 13445 consecutive levels with the sequential number m u n d  1.8 x lo7 (eighteen million) 
we have clearly demonstrated the validity of the semiclassical Berry-Robnik level-spacing 
distribution while at 1000 times smaller sequential quantum numbers we find the very persistent 
quasi-universal phenomenon of power-law level repulsion which is globally very well described 
by the phenomenological Brady distribution. This is the first statistically significant numerical 
confirmation of the Beny-Robnik surmise in an autonomous two-dimensional Hamiltonian 
system. 

The study of energy-level statistics of generic quantum Hamiltonian systems whose classical 
dynamics is between inte,%bility and full chaos continues to be a challenging problem 
[18-201. Until very recently there  were^ incompatible results concerning the so-called level- 
spncing distriburion P ( S )  where P ( S )  dS is the probability that a randomly chosen spacing 
between two adjacent energy levels lies between S - dS/2 and S +dS/2. Berry and Robnik 
[3] derived the semiclassical level-spacing distribution PBR(S) assuming the principle of 
uniform semiclassical condensation [2,  23, 15, 10,201 of eigenstates onto classical invariant 
components (which can be either regular (ton) or irregular (chaotic)) and the statistical 
independence of the level subsequences belonging to various disjoint classical invariant 
components. (Regular levels associated with quantized invariant ton may be merged together 
giving the well known Poisson distribution Ppoirron(S) = e&.) Using the factorization of 
gap distributions E ( S )  = SF du(u - S ) P ( u )  upon statistically independent superposition 
of spectra one may write 

E p ( S )  = Ep0iE5Q(plS)EG.0E(pZs) (1) 
for the simplest case of only one chaotic component with relative measure pz and regular 
components with total relative measure p~ = 1 -&. The Berry-Robnik distribution does not 
exhibit level repulsion, since P F ( 0 )  = 1 - pz # 0. On the other hand there has been a vast 
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amount of phenomenological evidence [20] in favour of the so-called fractional power-lmv 
level repulsion which is very well described globally by the Brody [6] distribution 

$(S) = as@ exp(-bS@+') a = (,9 + l)b b = [r(l+ (B + I)-')]@+' (2) 

which is characterized by the non-integer exponent j3, P(S  -+ 0) cx Sa. The Brody 
distribution is purely phenomenological and analytically the simplest globalization of the 
power-law level repulsion and it is not supported by any rigorous theoretical argument. 
Numerical spectra which contain even up to several tens of thousands of energy levels 
of quantum Hamiltonian systems with mixed classical dynamics typically still exhibit the 
phenomenon of fractional level repulsion, with statistically significant global fit by the Brody 
distribution [ZO]?. In such cases there was a remaining puzzle as to how the level-spacing 
distribution converges to the semiclassical Berry-Robnik distribution as one increases the 
sequential quantum number or decreases the value of effective E .  However, recently we 
have succeeded in demonstrating the ultimate semiclassical Berry-Robnik level-spacing 
distribution in a rather abstract one-dimensional time-dependent dynamical system, namely 
the standard map on a torus, and showed the smooth transition from Brody-like to Berry- 
Robnik distribution as f i  decreases [19, 201 (see. also [12]). The transition was described 
excellently by the two-parameter ( P I ,  ,9) Berry-Robnik-Brody model in which we substitute 
the GOE model for the chaotic part EGOE(pzS) in the Berry-Robnik formula (I) by the Brody 
model E;(,&) with some exponent j3. The major goal of this letter is to demonsGate this 
scenario in a generic two-dimensiond autonomous Hamiltonian system. 

Another goal of this letter is to demonstrate the practical power of  the recently 
developed quantum surface-of-section method [ l l ,  13, 241 (which has been motivated by 
the semiclassical version developed in [4] and extensively numerically investigated in [8]) 
and whose most thorough and complete presentation so far is given in [14]. We shall use the 
reactance matrix formulation of the quantization condition which has practical advantages 
over the scattering matrix formulation in the case of semiseparable systems [14, section 2.71. 
Here we give a brief and hence rather heuristic description of the method for the quantum 
Hamiltonians & in two-dimensional configuration space (CS) with coordinates ( x ,  y) where 
the line y = 0 represents the confguratioml sufuce ofsection (CSOS) while we use Dirichlet 
boundary conditions on the boundary lines y = b, > 0 and y =~-bJ c 0. Let Yy,.(x, y, E )  
be the solutions of the Schrodinger equation kY,,(x, y, E )  = EY.,,(x, y. E )  on the upper 
(y > 0, U = t = +)/lower (y c 0, U = .1= -) side of cs which satisfy the boundary 
conditions Y,,(x,O, E )  = u.(x), Yon(x, ubc, E )  = 0, and u.(x) is some complete set 
of functions for the small Hilbert space of L2 functions over one-dimensional CSOS, e.g. 
the eigenfunction of the reduced Hamiltonian H = &=o, H u , ( x )  = EAu,(x).The 
full eigenfunction Y(x, y. E )  of k can be expanded in terms of partial eigenfunctions 
Yrv,,(x, y, E )  on both sides as Y(x, y, E )  = xn c,.Ikn(E)I-''ZY,,V,,(x, y, E ) ,  where U = 
sign(y) while the square roots of the wavenumbers k,  = f i - - ' $ m  provide a useful 
normalization. In order for Y(x, y ,  E )  to be a non-trivial eigenfunction on the entire cs it 
should be continuously differentiable on CSOS (at y = 0). Using the completeness of the set 
u.(x) the requirement for continuity gives CT. = CJ., whereas requiring continuity of the 
normal derivative yields the singularity condition for the real-symmetric reactance matrix 

Theoretical arguments [3.221 suggest that level repulsion should be linear P ( S  +) c( S for very small spacings 
S c exp(-constantfi) but this linear regime hac no1 been observed so far (not even in the present work) since 
such small spacings cannodcan hardly be calculated and their number in a typical numerical spectrum is so small 
that they cannot significantly affect level-spacing statistics. 

, 
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R = RT + R A ,  

%"!(E) = oIII,(E)~!(E)I-'/~~dX~~~(x,O, E)a,%f(x,o, E )  (3) 

det R ( E )  = 0. (4) 
This equation is equivalent to the more physical but numerically less effective (due to 
complex non-symmetric arithmetic) quantization condition det(1 - Ti(E)TT(E))  = 0 
[ll, 13,24, 141 in terms of generalized (non-unitary) scattering matrices T,(E) of the two 
scattering problems (obtained by cutting off one half of the cs along csos and attaching the 
waveguide (flat in the y-direction) instead) which have a finite number N,,of propagating 
(open), and infinitely many evanescent (closed) modes e*kn(m,un(x), for &E) > 0, and 
k:(E) < 0, respectively. The scattering matrices are related to (non-real) reactance matrices 
by T, = (1 + &)(I - iR.,)-', where the latter are made real by a simple diagonal 
transformation % = D b D ,  where D = diag(l.1 ... No t i m e s . .  . I ,  &, 4.. .). 

We have applied this method to a semiseparable system which is separable aboveibelow 
csos but not separable on the whole a, namely to a two-dimensional semiseparable 
oscillator (SSO) with the Hamiltonian 

(5) 
with the parameters a,b, and f i . sso has a scaling symmetry (a,b,,h, E )  + 
(@a, Cub,, cr'h, cr2E). SSO is geometrically a rather special system but dynamically it is 
completely generic (like periodically kicked systems). The reduced Hamiltonian is just a 
simple one-dimensional harmonic oscillator -;fi2a: + 4.' with eigenfunctions u,(x) = 
( ~ 2 n n ! ) - 1 ~ * e x p ( - x z / ~ ) ~ ~ ( x / ~ )  and eigenenergies EA = (n + i)fi determining the 
wavenumbers k,(E) = fi-'JZE - (2a + I)??, n = 0, 1.. .:'It is easy to derive an explicit 
expression for the reactance matrices for sso 

Rt(E) = J ( E ) O C t ( E ) O T J ( E )  & ( E )  = J(E)OTCj (E)OJ(E)  (6) 

- bA 6 Y 6 b p  Ei = 1 2  (a, 2 + a,") + $(x  - $sign(y)a)' 

where J ( E )  and C, (E)  are real diagonal matrices 

Jnr(E) &dkn(E)I-'" C ~ ~ I ( E )  = -Gnrkn(E) cot(kn(E)bu) (7) 

On! = d r U . ( X ) U l ( X  + fa) (8) 

and 0 is the real orthogonal shift matrix 

s 
whose matrix elements can be calculated via the numerically stable symmemc recursion 

(-1)' eXP (-&) o --exp(-&) 1 00.l=- 

- 8 
a a 

on-1.1 - - -On.1-1 

It is important how we truncate these infinitely-dimensional matrices for the numerical 
calculation. One has to consider all the No = round(E/fi) open modes plus as many N, 
closed modes so that the numerical results (roots of (4)) converge. I have us& semiclassical 
arguments (the SOS ( x ,  p x )  phase space supports of coherent state representation of the 
states u.(x), n = 0,. . . , No + Nc - 1 should cover the supports of the states U& + ;U) .  1 = 
0, . . . , No - 1) to estimate the minimal number of closed modes 
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The dimension of matrices N = No + Nc is thus usually (for small a)  only a little larger 
than the number of open modes No. 

It is also very important to stress that the shift matrix and therefore also the reactance 
matrices are eflecrively banded. I have obtained a semiclassical formula for their bandwidths 
using an overlap condition for the coherent state representation of the SOS states U,(& and 
u,(x-+ ;a) 

bandwidth(&(E)) = 2  bandwidth(0) x 
A 

Note that the function f(E) = detR(E) has singularities (poles) at the points E where 
for some n,  k,(E)b,  is a multiple of E .  But between the two successive poles f(E) is 
a smooth (even analytic) real function-of real energy E. I have devised an algorithm for 
calculation of almost all levels-zeros of f ( E )  within a given interval [E; .  E,] which only 
needs to evaluate f ( E )  about 25 times per mean-level-spacing while it typically misses 
less than 0.5% of all levels. The control over missed levels is, in general, a very difficult 
problem. The number of all energy levels below a given energy E,  N(E) can be estimated 
by means of the Thomas-Fermi rule 

(11) 

But this formula is generally not very helpful even if the next semiclassical corrections are 
negligible since the fluctuation ofthe number of levels in an interval [Ei, E,] is proportional 
to JN(E1) - N(Ei) except in the extreme case of fully chaotic systems where the spectra 
are much stiffer and the fluctuation is goportional to log[N(E,) -N(Ei)] so that Thomas- 
Fermi rule can be used to detect even a single missing level 15, 11. 

We have chosen the following values of the parameters for our numerical demonstration: 
a = 0.03, bt = 5.0, b$ = 10.0 and E = 0.5, while for quantal calculations we take the 
energy to be in a narrow interval around E = 0.5. For illustration we plot the classical SOS 
(x .  p z ,  y = 0) in figure 1. There is only one dominating chaotic component with relative 
measure pz = 0.709 & 0.001 and the regular region still with some very small chaotic 
components with the complementary total relative measure p,  =~ 1 - pz = 0.291 f 0.001. 
For the quantal calculations we have chosen two different values of h = 0.01 and A = 0.0003 
which correspond to the sequential numbers N x 16000 and N x 17 684000, respectively. 

1.6 x 104) we have calculated 14231 levels in the 
interval 0.35 c E c 0.65. We have performed a x 2  test and obtained a statistically 
significanf fit of P ( S )  by the Brody distribution witb ,8 = 0.142 f 0.002, xi = 5320 and 
a non-signijicant Berry-Robnik fit with p~ = 0.548, x in  = 130000 (see figure 2). The 
phenomenological Brody distribution globally and locally captures the numerical data, e.g. 
for 973 small spacings in the range 0 < S c 0.1 the local best fit by the Brody model 
is highly significant and gives the level repulsion exponent p = 0.140 f 0.005 in perfect 
agreement with the global value. In order to present the most detailed information we 
plot a cumulative level-spacing distribution W ( S )  = J:da P ( u )  and the deviation of the 
numerical U-function [18] U ( W ( S ) )  = ( Z / n ) a r c c o s ( f l T )  from the best-fit B e e -  
Robnik U-function U(WBR(S)) versus W ( S )  which has the nice property that the estimated 
statistical error SU = l/j?v% and the density of numerical points along the abscissa are 
constant. In spite of the already very high sequential number this is still an example 
of the so-called near-semiclassical regime characterized by the fractional power-law level 
repulsion. 

In the second ‘case ( A  = 0.0003.N % 1.8 x 10’) we have calculated 13445 
levels on the interval 0.499 85 < E c 0.500 105 and found a significant fit by the 

bA + b$ 
3zA 

N(E)  x ARE) = +(2~)3’2 = O(NZ). 

. ,  
In the first case (h = 0.01.N 
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Figure 1. Classical surface of section y = 0 with coordinates x and px of the semiseparable 
oscillator: n = 0.03. b+ = 5.0, bj = 10.0 and E = 0.5. 750 orbits with 400W crossings of SOS 

each are shown. 

semiclassical Berry-Robnik formula (see figure 3) with the correcf value of regular volume 
p1 = 0.286 & 0.005, xiR = 12 150 while the Brody fit becomes highly non-significant, 
0 = 0.367, xi = 249000. Thus we have demonstrated the so-called far-semiclassical 
regime with the quantum value of p1 which agrees excellently with the classical regular 
volume (the small deviation is within error bars). The fit to the combined Berry-Robnik- 
Brody model does nof significantly improve xZ = 11 950 while it substitutes the GOE model 
for the chaotic part by the Brody model with p % 0.85. 

Large square-root number fluctuations prevent the determination of the number of missed 
levels by using the Thomas-Fermi rule (although higher-order semiclassical corrections are 
negligible in this regime). One can compare the number of levels N(E) with the number 
of levels &(E) or &(E)  for the two nearby integrable-separable cases (with the same bo 
but with a = 0 (single-box limit) or a -+ CO (two-box limit), respectively) since the leading- 
order semiclassics (Thomas-Fermi rule) does not depend upon defect a. &(E) and &(E) 
can be easily calculated numerically and [arge-scale fluctuations of N(E) -&..,(E) turn 
out to be much smaller than the fluctuations of N(E) - f l F ( E )  suggesting that we have 
missed less than 20 levels out of 14231 at fr = 0.01 (figure 2) and 40-80 levels out of 13 445 
at ti = 0.0003 (figure 3). Note that in the first case @ = 0.01) there were much fewer almost 
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Figure 2. (a) Cumulative level-spacing distribution W(S)  and (b) deviation of its U- 
function from the best-fit Ben'-Rob& distribution for 14231 consecutive levels of sso at 
a = 0.03.b+ = 5.0.bb = 10.0,0.35~< E < 0.65 and h = 0.01. Thick full c w e s  (a) and 
(b) (within one sigma error band (b)) represent numerical data. fie thin full curve (a)  is a 
best-fit Berry-Robnik distribution with P I  = 0.548 whereas the broken curves (a),(b) are the 
b - f i t  Bmdy distribution with f l  = 0.142. The doued curves (a )  represent the limiting Poisson 
and GOE distributions whereas fie broken dotted Cwes (b) reprrsent the nearby Berry-Robnik 
curves with PI  = 0.548 & 0.D1. &0.02. 
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Figure 3. The Same as in figure 2 but now at A = 0.0003 for 13445 levels in the intmal 
0,49985 < E < 0.500 105 in the me (far) semiclassical regime (see text). The Berry-Robu& 
distribution with p~ = 0.287 is now statistically significant and for an illustration of the accuracy 
of the fined pl we also provide Berry-Robnik curves for PI = 0.287 i 0.01,10.02 (broken 
dotted c w e s  (b)). 
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degenerate pairs of levels (and therefore less missed levels) due to the level repulsion. 
In conclusion I should emphasize that the present letter presents a clear demonstration 

of the semiclassical Berry-Robnik level-spacing distribution in a generic two-dimensional 
autonomous Hamiltonian system between integrability and chaos, i.e. a semiseparable 
oscillator. This would not be possible without application of the quantum surfaceof-section 
method which enabled us to calculate 13445 consecutive levels with sequential numbers 
N FT 1.8 x lo7 within a week of Convex 3680 CPU time. For this system, the quantum 
surface-of-section method requires O ( U ~ @ / ~ )  m/level. In forthcoming publications 1161 
I will discuss in detail the energy spectra, quantum eigenstates, and quantum SOS evolution 
by the quantum SOS method in the semiseparable oscillator, and [ 171 apply the quantum 
SOS method to a more realistic example, namely the diamagnetic Kepler problem [9,7,21]. 

I am grateful to Professor Marko Robnik for fruitful discussions. Financial support by the 
Ministry of Science and Technology of the Republic of Slovenia is gratefully acknowledged. 
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